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The eccentric connectivity index of the molecular graph G, ξc(G), was proposed by Sharma, Goswami and Madan. It is 
defined as ξc(G) = Σu∈V(G)degG(u)ecc(u), where degG(x) denotes the degree of the vertex x in G and ecc(u) = Max{d(x,u) | x 
∈ V(G)}. The eccentricity connectivity polynomial of a molecular graph G is defined as ECP(G,x) = Σa∈V(G)degG(a)xecc(a), 
where ecc(a) is defined as the length of a maximal path connecting a to another vertex of G. In this paper this polynomial is 
computed for triangular benzenoid graphs. 
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1. Introduction 
 
At first we recall some algebraic definitions that will 

be used in the paper. Throughout this paper, graph means 
simple connected graph. The vertex and edge sets of a 
graph G are denoted by V(G) and E(G), respectively. If x, 
y ∈ V(G) then the distance d(x,y) between x and y is 
defined as the length of a minimum path connecting x and 
y. The eccentric connectivity index of the molecular graph 
G, ξ (G), was proposed by Sharma, Goswami and Madan1. 
It is defined as ξ(G) = Σu∈V(G)degG(u)ecc(u), where degG(x) 
denotes the degree of the vertex x in G and ecc(u) = 
Max{d(x,u) | x ∈ V(G)}, see [2-6] for details. The radius 
and diameter of G are defined as the minimum and 
maximum eccentricity among vertices of G, respectively. 

We now define the eccentric connectivity polynomial 
of a graph G, ς(x), as  

 
ς(x) = Σa∈V(G)degG(a)xecc(a). 

 
Then the eccentric connectivity index is the first 

derivative of ς(x) evaluated at x = 1.  
Herein, our notation is standard and taken from the 

standard book of graph theory such as [7] and [8-13]. 
 
 
2. Results and discussion 
 
The aim of this section is to compute ς(x), for an 

infinite family of triangular benzenoid graph. To do this 
we should to consider the following examples: 

 
Example 1. Consider graph G depicted in Fig. 1. This 

graph has 13 vertices and 15 edges. This graph has a 
vertex such as u, with ecc(u) = 3, three vertices with 
eccentricity of 4 and six vertices of eccentricity 5. In other 
words 3 4 5( ) 3 9 18x x x xς = + +  and so ( ) 135Gξ = . 

 

 
Fig. 1. Graph of triangular benzenoid G[2]. 

 
Example 2. Consider graph G[3] depicted in Fig. 2. 

This graph has 22 vertices and 27 edges. By computing 
eccentricity polynomial of G[3] it is easy to check that 

4 5 6 7( ) 3 9 18 24x x x x xς = + + + . Hence ( ) 333Gξ = . 
 

 
Fig. 2. Graph of triangular benzenoid G[3]. 

 
Example 3. Consider graph G[4] depicted in Fig. 3. 

This graph has 33 vertices and 42 edges. Similar to last 
examples one can see that 

6 7 8 9( ) 9 18 27 30x x x x xς = + + + . Hence ( ) 4678Gξ = . 
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Fig. 3. Graph of triangular benzenoid G[4]. 

 
 
Example 4. Consider graph G[5] depicted in Fig. 4. 

This graph has 46 vertices and 60 edges. Also, 
7 8 9 10 11( ) 3 18 27 36 36x x x x x xς = + + + +  and so 

( ) 10278Gξ = . 
 

 
Fig. 4. Graph of triangular benzenoid G[4]. 

 
In generally consider graph G[n] depicted in Fig. 4. 

This graph has n2+ 4n + 1 vertices and 
23( 3 )
2

n n+  edges. 

By continuing above method one can see the eccentric 
connectivity index is as follows:  
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