Eccentric connectivity polynomial of triangular benzenoid

M. GHORBANI*, A. AZAD, M. GHASEMI
Department of Mathematics, Faculty of Science, Shahid Rajaee, Teacher Training University, Tehran, 16785-136, I. R. Iran, Department of Mathematics, Faculty of Sciences, Arak University, Arak, 38156, I. R. Iran

Abstract

The eccentric connectivity index of the molecular graph $G, \xi^{c}(G)$, was proposed by Sharma, Goswami and Madan. It is defined as $\xi^{c}(G)=\Sigma_{u \in V(G)} \operatorname{deg}_{G}(u) \operatorname{ecc}(u)$, where $\operatorname{deg}_{G}(x)$ denotes the degree of the vertex x in G and $\operatorname{ecc}(u)=\operatorname{Max}\{d(x, u) \mid x$ $\in \mathrm{V}(\mathrm{G})\}$. The eccentricity connectivity polynomial of a molecular graph G is defined as $\mathrm{ECP}(\mathrm{G}, \mathrm{x})=\Sigma_{\mathrm{a} \in \mathrm{V}(\mathrm{G})} \mathrm{deg}_{\mathrm{G}}(\mathrm{a}) \mathrm{x}^{\operatorname{ecc}(\mathrm{a})}$, where $\operatorname{ecc}(\mathrm{a})$ is defined as the length of a maximal path connecting a to another vertex of G . In this paper this polynomial is computed for triangular benzenoid graphs.

(Received August 1, 2010; accepted August 12, 2010)
Keywords: Eccentric connectivity index, Eccentricity connectivity polynomial, Triangular benzenoid graph

1. Introduction

At first we recall some algebraic definitions that will be used in the paper. Throughout this paper, graph means simple connected graph. The vertex and edge sets of a graph G are denoted by $V(G)$ and $E(G)$, respectively. If x, $y \in V(G)$ then the distance $d(x, y)$ between x and y is defined as the length of a minimum path connecting x and y. The eccentric connectivity index of the molecular graph $\mathrm{G}, \xi(\mathrm{G})$, was proposed by Sharma, Goswami and Madan ${ }^{1}$. It is defined as $\xi(\mathrm{G})=\Sigma_{\mathrm{u} \in \mathrm{V}(\mathrm{G})} \operatorname{deg}_{\mathrm{G}}(\mathrm{u}) \operatorname{ecc}(\mathrm{u})$, where $\operatorname{deg}_{\mathrm{G}}(\mathrm{x})$ denotes the degree of the vertex x in G and $\operatorname{ecc}(u)=$ $\operatorname{Max}\{d(x, u) \mid x \in V(G)\}$, see [2-6] for details. The radius and diameter of G are defined as the minimum and maximum eccentricity among vertices of G, respectively.

We now define the eccentric connectivity polynomial of a graph $\mathrm{G}, \varsigma(\mathrm{x})$, as

$$
\varsigma(\mathrm{x})=\Sigma_{\mathrm{a} \in \mathrm{~V}(\mathrm{G})} \operatorname{deg}_{\mathrm{G}}(\mathrm{a}) \mathrm{x}^{\operatorname{ecc}(\mathrm{a})}
$$

Then the eccentric connectivity index is the first derivative of $\varsigma(\mathrm{x})$ evaluated at $x=1$.

Herein, our notation is standard and taken from the standard book of graph theory such as [7] and [8-13].

2. Results and discussion

The aim of this section is to compute $\varsigma(x)$, for an infinite family of triangular benzenoid graph. To do this we should to consider the following examples:

Example 1. Consider graph G depicted in Fig. 1. This graph has 13 vertices and 15 edges. This graph has a vertex such as u, with $\operatorname{ecc}(u)=3$, three vertices with eccentricity of 4 and six vertices of eccentricity 5 . In other words $\varsigma(x)=3 x^{3}+9 x^{4}+18 x^{5}$ and so $\xi(G)=135$.

Fig. 1. Graph of triangular benzenoid G[2].

Example 2. Consider graph G[3] depicted in Fig. 2. This graph has 22 vertices and 27 edges. By computing eccentricity polynomial of G[3] it is easy to check that $\varsigma(x)=3 x^{4}+9 x^{5}+18 x^{6}+24 x^{7}$. Hence $\xi(G)=333$.

Fig. 2. Graph of triangular benzenoid G[3].

Example 3. Consider graph G[4] depicted in Fig. 3. This graph has 33 vertices and 42 edges. Similar to last examples one can see that $\varsigma(x)=9 x^{6}+18 x^{7}+27 x^{8}+30 x^{9}$. Hence $\xi(G)=4678$.

Fig. 3. Graph of triangular benzenoid G[4].

Fig. 4. Graph of triangular benzenoid G[4].

Example 4. Consider graph G[5] depicted in Fig. 4. This graph has 46 vertices and 60 edges. Also, $\varsigma(x)=3 x^{7}+18 x^{8}+27 x^{9}+36 x^{10}+36 x^{11}$ and so $\xi(G)=10278$.

In generally consider graph $G[n]$ depicted in Fig. 4. This graph has $n^{2}+4 n+1$ vertices and $\frac{3\left(n^{2}+3 n\right)}{2}$ edges. By continuing above method one can see the eccentric connectivity index is as follows:

$$
\varsigma(x)=\left\{\begin{array}{lc}
3 \sum_{i=2}^{n} a_{i} x^{n+i}+2(n+1) x^{2 n+1}, a_{i} \notin\{1,4, \ldots, 3 i-2, \ldots, 3 n-2,3 n-3\} & n \stackrel{3}{\equiv} 0 \\
3 \sum_{i=1}^{n} a_{i} i^{n+i}+2(n+1) x^{2 n+1}, a_{i} \notin\{2,5, \ldots, 3 i-1, \ldots, 3 n-1,3 n-3\} & n \stackrel{3}{\equiv} 1 \\
3 \sum_{i=1}^{n} a_{i} i^{n+i}+2(n+1) x^{2 n+1}, a_{i} \notin\{3,6, \ldots, 3 i, \ldots, 3 n, 3 n\} & n \stackrel{3}{\equiv} 2
\end{array}\right.
$$

References

[1] V. Sharma, R. Goswami, A. K. Madan, J. Chem. Inf. Comput. Sci. 37, 273 (1997).
[2] B. Zhou, Z. Du, MATCH Commun. Math. Comput. Chem, 63 (2010) (in press).
[3] A. A. Dobrynin, A. A. Kochetova, J. Chem., Inf., Comput. Sci, 34, 1082 (1994).
[4] I. Gutman, J. Chem. Inf. Comput. Sci, 34, 1087 (1994).
[5] I. Gutman, O. E. Polansky, Springer-Verlag, New York, 1986.
[6] M. A. Johnson, G. M. Maggiora, Concepts and Applications of Molecular Similarity, Wiley Interscience, New York, 1990.
[7] N. Trinajstić, Chemical Graph Theory, (second ed.) CRC Press, Boca Raton, 1992.
[8] M. V. Diudea, Fullerenes, Nanotubes and Carbon Nanostructures, 10, 273 (2002).
[9] A. R. Ashrafi, M. Ghorbani, M. Jalali, Ind. J. Chem., 47A, 535 (2008).
[10] M. Ghorbani, A. R. Ashrafi, J. Comput. Theor. Nanosci., 3, 803 (2006).
[11] A. R. Ashrafi, M. Jalali, M. Ghorbani, M. V. Diudea, MATCH Commun. Math. Comput. Chem, 60(3), 905 (2008).
[12] M. Ghorbani, M. Jalali, Digest Journal of Nanomaterials and Biostructures, 3(4), 269 (2008).
[13] A.R. Ashrafi, M. Ghorbani, M. Jalali, Digest Journal of Nanomaterials and Biostructures, 3(4), 245 (2008).

[^0]
[^0]: -Corresponding author: ghorbani30@gmail.com

